An Optimal Algorithm for Midcourse Guidance Law Under Wind Disturbance

Sy-Hieu Nguyen¹, Dinh-Dung Nguyen², ³, *

¹Department of Missile, Faculty of Control Engineering, Le Quy Don Technical University, Hanoi, Vietnam
²Department of Aircraft System Design, Faculty of Aerospace Engineering, Le Quy Don Technical University, Hanoi, Vietnam
³Department Aeronautics, Naval Architecture and Railway Vehicles, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Budapest, Hungary

Email address:
Nguyensyhieu30@gmail.com (Sy-Hieu N.), ddnguyen@vrht.bme.hu (Dinh-Dung N.)

*Corresponding author

To cite this article:

Received: March 22, 2020; Accepted: April 8, 2020; Published: December 31, 2020

Abstract: The guidance laws are commonly designed to yield as small a miss distance as possible, harmonious with the missile’s acceleration capability. In recent decades, the concept of optimized guidance law is well understood in applications where information concerning the target range and line-of-sight angle is available. Researchers’ efforts have been continually made to apply modern control theory to conventional and adaptive autopilot designs, even though the classical theory is still applicable to autopilots. It can be noted that it is desirable to perform a detailed computer-aided feasibility study within the context of a realistic missile-target engagement model. Development and evaluation of guidance and control laws for simplified missile-target engagement scenarios are extended and adapted to the air-to-air missile situation and implemented in a complete three-dimensional engagement model. Thus, this study proposed a computational method for constructing an optimal midcourse guidance law, which is based on the optimal control theory and initial boundary conditions. This proposed guidance law is derived from an optimal control theory with the boundary conditions such as allowed relative distance between missile and target at the final time, low line-of-sight rate. A numerical simulation verifies the performance of this guidance law with the impact of harmonic wind. The simulation results demonstrate that the quality of effectiveness as well as the applicability of this proposed algorithm.

Keywords: Optimal Control, Optimal Guidance Law, Midcourse Phase, Wind Disturbance

1. Introduction

The guided missiles consist of aerodynamic guided missiles, which use an aerodynamic lift to control its direction of flight. An aerodynamic guided missile can be defined as an aerospace vehicle, with varying guidance capabilities, that is self-propelled through the atmosphere to inflict damage on a designated target. Two common types of guided missiles that create a threat to aircraft are the air-to-air (AA), or air-intercept missiles (AIM), and the surface-to-air (SAM). The AA and SAM missiles are launched from interceptor fighter aircraft and employing various guidance techniques. Surface-to-air missiles can be launched from land or sea-based platforms.

Conventional proportional navigation systems have been improved with time-variable filtering, and the design process has been enhanced with automatic computer approaches. Several studied have been taken in the past to investigate, evaluate, and improve the proportional navigation problem [1, 8-12]. With online Kalman estimation for filtering noisy radar data and optimal control gains, the guidance systems have been developed in performances. These approaches are commonly designed to yield as small a miss distance as possible, consistent with the missile’s acceleration capability.

In recent decades, the concept of optimized guidance law is well understood in applications where information concerning the target range and line-of-sight angle is available. Researchers’ efforts have been continually made to apply...
modern control theory to conventional and adaptive autopilot designs, even though the classical theory is still applicable to autopilots.

Optimal control and estimation theory have been commonly used in the design of advanced guidance systems from the late 1960s [2-7, 13-16]. Such approaches have been used to develop tracking algorithms that extract the maximum amount of information about a target trajectory. This information used to optimize the directed missile toward the selected destination. Compared to general guidance and control techniques, the advantages of the optimized system are most significant against maneuverable airborne targets, where target acceleration information and rapid guidance system response time are required to achieve acceptable accuracy, in minimum time. Besides, to solve highly non-linear flight control problems, neural network algorithms, and fuzzy logic theory have been developed, which is motivated by the demand to deal with non-linear flight control and performance robustness problems.

It can be noted that it is desirable to perform a detailed computer-aided feasibility study within the context of a realistic missile-target engagement model. The guidance and control laws have been developed and evaluated for simplified missile-target engagement scenarios, which must be extended and adapted to the air-to-air missile situation and then implemented in a complete three-dimensional engagement model.

In reference [1], by considering the desired impact angle without violating the field-of-view limit, the authors studied a two-stage pure proportional navigation guidance law. Majumder et al. investigated a near-optimal solution in real-time for air-to-air engagement [2]. This solution is used to solve the midcourse guidance problem in real-time for air-to-air engagement. The authors also presented recent developments in this field.

In reference [3], the authors proposed an optimal midcourse guidance law with flight path angle and lead angle constraints to reach a circular target area. This guidance law was derived by applied an optimal control theory, which minimizes control energy weighted by a power of a range-to-go. However, in this research, the target was considered as a stationary target because it moves so slowly. For that target, Zhang et al. proposed a novel closed-form guidance law with impact time and impact angle constraints [4]. This guidance law takes the missile’s normal acceleration as the control command directly. By simplifying missile dynamics under small heading error approximation, Chen and Wang derived an optimal guidance law with impact angle constraint against a stationary target [5]. An impact time requirement is achieved by adding a feedback controller to the obtained optimal guidance law.

By solving an optimal control problem minimizing the energy cost function weighted by a power of range-to-go, Park proposed an optimal guidance law with terminal angle constraint at the end of the midcourse phase [6]. In reference [7], considering the final velocity vector constraint, an optimal terminal guidance law was developed for exoatmospheric interception using the optimal control theory. By taking the gravity difference model in this approach, the proposed guidance law requires much less fuel than the traditional ones in the exoatmospheric interception. Various missile guidance laws-based optimal theory has been developed, and their performances have been verified in several aspects, including accuracy, robustness, and efficiency [17-22].

In recent years, the combined guidance laws have been applied widely for air-to-air missiles. These guidance laws have several advantages, such as the significant distance of attack, high accuracy, sizeable initial look-angle.

In the literature review, however, the targets move so slowly or stationary. Therefore, the parameters of the target cannot be introduced in the geometric dynamic equations that represent the relationship between the missile and target. Then, by applying the optimal control theory, the analytics guidance law can be natural to synthesize. For maneuver targets, the guidance law is based on the proportional navigation guidance law with impact angle and impact time [5, 6, 19-21]. This guidance law, however, is not compared to the optimal one. So, in this study, an optimal guidance law is proposed for a missile to attack a maneuvering target. This guidance law is derived from the optimal control theory with the boundary conditions such as allowed relative distance between missile and destination at the final time, low line-of-sight rate.

The rest of this paper is as follows. In section 2, based on the dynamic missile model, a state equation system is deduced. An optimal midcourse guidance law is also presented in this section, which is based on the boundary conditions at the final time and optimal control theory that minimizes a range of weighted control energy. The simulation results and investigation of the proposed guidance law with the influence of wind are given in section 3, concluding the paper will be presented in section 4.

2. Computation of an Optimal Midcourse Guidance Law

2.1. Equation of Motion

The desired trajectory of a missile is shown in Figure 1. Where, \(V_m \) and \(\psi_m \) are velocity and flight path angle of the missile, respectively; \((x, z)\) is the position of the missile; \((x_m^*, z_m^*)\) is the desired position of the missile; \(\psi_m^* \) is the desired flight path angle of the missile; \(h \) is the instant deviation that is defined as a relative distance from the target, which is perpendicular to the velocity vector.

The equations of motion in the \(x, y, z \) coordinate as follows:

\[
\begin{align*}
\Delta \psi &= \frac{V_m}{v_y} n_z \\
\dot{x}_1 &= V_m \cos \Delta \psi \\
\dot{z}_1 &= V_m \sin \Delta \psi
\end{align*}
\]

(1)
We assume that \(x_m \) is a variable, then, \(z_m = f(x_\phi) \) is the desired trajectory in the coordinate’s \(x_\phi \), \(z_\phi \). The function \(f(x_\phi) \) must ensure rectilinear asymptote with the straight line \(x_\phi x_1 \).

The function \(f(x_\phi) \) is described in detail as follows:

A function which represents the transition from \(Oxz \) coordinate to \(x_0 x_1 z_1 \) coordinate is given in (2).

\[
\begin{align*}
 z &= K \frac{x-x_0}{\sigma^2} e^{-\frac{(x-x_0)^2}{2\sigma^2}} \\
 \sigma &= \frac{x_2-x_1}{1-x}, K = be^{2\sigma} \\
 f_s &= \frac{\partial z}{\partial x} = \frac{K}{\sigma^2} e^{-\frac{(x-x_0)^2}{2\sigma^2}} \left(1 - \frac{(x-x_0)^2}{\sigma^2} \right) \\
 f_{ss} &= -\frac{K}{\sigma^2} \frac{x-x_0}{\sigma^2} \left(3 - \frac{(x-x_0)^2}{\sigma^2} \right) e^{-\frac{(x-x_0)^2}{2\sigma^2}} \left(1 - \frac{(x-x_0)^2}{\sigma^2} \right)
\end{align*}
\]

(2)

where, \(Ox \) is the horizontal asymptote of the function \(z \);

\[
 z = 0 \text{ when } x - x_0 = 0; \text{ and } z = z_{\text{max}} = \frac{K}{\sigma} e^{-\frac{1}{2}} \text{ when } x - x_0 = \sigma.
\]

We aim to find the values \(K \) and \(\sigma \) so that the graph of the function \(z \) passes through the point \((x_1, a) \) and reaches the maximum value at \((x_2, b) \). Where, \(x_1, x_2, a, \) and \(b \) are known values. Using the division method, we get a solution \(x^* \) from which we find \(K \) and \(\sigma \) satisfy the requirement. The first and second derivatives of (2) are given as (3) and (4):

\[
\begin{align*}
 \Delta h &= V_m \sqrt{1 + f_s^2} \sin(\Delta \psi - \psi_m) \\
 \psi_m \text{ is the desired flight path angle at the time } t.
\end{align*}
\]

(5)

It can be seen from the Figure 1 that the deviation between a missile trajectory and the desired one is determined as follows:

\[
\Delta h = h - z_m = z_1 - z_m \quad \text{two-sides derivation and combination with (1) we have:}
\]

(6)

Combining with the first equation of the (1), we have:

\[
\begin{align*}
 \Delta \dot{\psi} &= \frac{g}{V_m} n_z - \psi_m \\
 \Delta \dot{h} &= V_m \sqrt{1 + f_s^2} \sin(\Delta \dot{\psi})
\end{align*}
\]

where, \(n_z \) is the normal overload factor.

Let \(n_{zm} = V_m \sqrt{1 + f_s^2} (n_z - \psi_m) \). We get:

\[
\begin{align*}
 \Delta \dot{\psi} &= \frac{g}{V_m} n_{zm} \\
 \Delta \dot{h} &= V_m \sin(\Delta \dot{\psi})
\end{align*}
\]

We get:

\[
\begin{align*}
 \Delta \dot{\psi} &= \frac{g}{V_m} n_{zm} \\
 \Delta \dot{h} &= V_m \sin(\Delta \dot{\psi})
\end{align*}
\]

2.2. Computation of an Optimal Midcourse Guidance Law

Let us consider the cost function is as follows:

\[
J = \frac{1}{2} \rho_1 \Delta \dot{\psi}_i^2 + \frac{1}{2} \rho_2 \Delta \dot{h}_i^2 + \frac{1}{2} \int_{t_1}^{t_f} k \Delta \phi_i dt \to \min
\]

(9)

\[
G = \frac{1}{2} \left[\Delta \dot{\psi}_f \begin{bmatrix} p_f^T \end{bmatrix} \right] + \frac{1}{2} \left[\Delta \dot{h}_f \begin{bmatrix} p_f \end{bmatrix} \right] \quad p_f = \begin{bmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{bmatrix}
\]

Figure 1. The desired trajectory of a missile.
\[
\begin{align*}
\frac{d\lambda_{\Delta\psi}}{dt} &= -\frac{\partial H}{\partial \Delta\psi} = -\lambda_{\Delta\psi}\nu_m \cos \Delta\psi \\
\frac{d\lambda}{dt} &= -\frac{\partial H}{\partial \lambda} = 0
\end{align*}
\] (11)

The expression determines the optimal solution \(\frac{\partial H}{\partial n_{zm}} = 0 \), we obtain:

\[n_{zm} = -\frac{g}{k \nu_m} \lambda_{\Delta\psi} \] (12)

From (9), the Terninant function is:

\[G = \frac{1}{2} \rho \Delta \psi + \frac{1}{2} \rho_2 \Delta h^2, \]

we have converted boundary conditions:

\[
\begin{align*}
\lambda_{\Delta\psi} & = \frac{\partial G}{\partial \Delta\psi} = \rho_1 \Delta \psi \\
\lambda & = \frac{\partial G}{\partial \lambda} = \rho_2 \Delta h
\end{align*}
\]
into a matrix form:

\[
\begin{bmatrix}
\lambda_{\Delta\psi} \\
\lambda
\end{bmatrix}
= \begin{bmatrix}
P_f \\
= P_f
\end{bmatrix}
\begin{bmatrix}
\Delta\psi \\
\Delta h
\end{bmatrix}
+ \begin{bmatrix}
\rho_1 \\
\rho_2
\end{bmatrix}
\] (13)

The Equation (8) is rearranged in a matrix form as the following:

\[
\begin{bmatrix}
\Delta\psi \\
\Delta h
\end{bmatrix}
= \begin{bmatrix}
0 & 0 \\
\nu_m & 0
\end{bmatrix}
\begin{bmatrix}
\Delta\psi \\
\Delta h
\end{bmatrix}
+ \begin{bmatrix}
\frac{g}{\nu_m} \\
0
\end{bmatrix}
\]
where, \(\sin \Delta\psi = \Delta\bar{\psi} \)

The dynamics of missile is given:

\[\dot{x} = A^{(1)} x + Bu \] (14)

From (11), we can rewrite in the following form:

\[
\begin{bmatrix}
\dot{\lambda}_{\Delta\psi} \\
\dot{\lambda}
\end{bmatrix}
= \begin{bmatrix}
0 & \nu_m \cos \Delta\psi \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\lambda_{\Delta\psi} \\
\lambda
\end{bmatrix}
\] (15)

where, \(\dot{\lambda} = A^{(22)} \lambda \)

\[A^{(22)} = \begin{bmatrix}
0 & \nu_m \cos \Delta\psi \\
0 & 0
\end{bmatrix}; \lambda = \begin{bmatrix}
\lambda_{\Delta\psi} \\
\lambda
\end{bmatrix} \]

From (12) and (14) we have:

\[\dot{x} = A^{(1)} x - \frac{g}{k \nu_m} \begin{bmatrix}
1 & 0
\end{bmatrix} \lambda \]

We can rewrite in the following form:

\[\dot{x} = A^{(1)} x + A^{(12)} \lambda \] (16)

where, \(A^{(12)} = -\frac{1}{k} \begin{bmatrix}
\frac{g}{\nu_m} & 2 \\
0 & 0
\end{bmatrix} \)

And from (15) and (16) we obtain:

\[
\begin{bmatrix}
\dot{x} \\
\dot{\lambda}
\end{bmatrix} = \begin{bmatrix}
A^{(1)} & A^{(12)} \\
A^{(21)} & A^{(22)}
\end{bmatrix}
\begin{bmatrix}
x \\
\lambda
\end{bmatrix} \]
(17)

where, \(A^{(21)} = [0]_{2\times2} \)

From (13), the states at the final time are determined as follows:

\[
\begin{bmatrix}
x \\
\lambda
\end{bmatrix} = \begin{bmatrix}
I_{2\times2} \\
P_f
\end{bmatrix}
\begin{bmatrix}
x_f \\
\lambda_{f_f}
\end{bmatrix} \]

Substituting into (18), we have:

\[
\begin{bmatrix}
x \\
\lambda
\end{bmatrix} = \begin{bmatrix}
\Phi_{11}(t_f - t_f) \\
\Phi_{12}(t_f - t_f)
\end{bmatrix}
\begin{bmatrix}
I_{2\times5} \\
P_f
\end{bmatrix}
\begin{bmatrix}
x_f \\
\lambda_{f_f}
\end{bmatrix} \]
(19)

From (19), we get:

\[x = (\Phi_{11} + \Phi_{12} P_f)x_f \Rightarrow x_f = (\Phi_{11} + \Phi_{12} P_f)^{-1} x \]

\[\lambda = (\Phi_{21} + \Phi_{22} P_f)x_f = P^T(t) x \] (20)

where, \(P^T(t) = (\Phi_{21} + \Phi_{22} P_f)(\Phi_{11} + \Phi_{12} P_f)^{-1} \)

From (13) and (20), we obtain boundary conditions:

\[P^T(t_f) = P_f \] (21)

Two-sides derivative of (20) we get:

\[\dot{\lambda} = P^T(t) \dot{x} + P^T(t) x \] (22)

From (15), (16), (20), and (22) we get:

\[A^{(22)} P^T(t)x = P^T(t)(A^{(1)} x + A^{(12)} P^T(t)x) + P^T(t) x \]

\[\hat{P}(t) = P(t) \left(A^{(22)^T} - (A^{(11)})^T \right) P(t) - P(t) A^{(12)} P(t) \] (23)
\[P(t) = \left[\begin{array}{c} V_m (\cos \Delta \varphi P_1 - P_2) \frac{V_m}{g} \left(\frac{g}{V_m} \right)^2 P_1^2 \ - P_1 \frac{V_m}{g} P_2^2 \ + \frac{1}{k} \left(\frac{g}{V_m} \right)^2 P_1 P_2 \end{array} \right] \] (24)

From (12) and (20) an optimal midcourse guidance law is determined as follows:
\[n_{zm} = -\frac{g}{k} \left[\frac{1}{V_m} (P_1 \Delta \varphi + P_2 \Delta h) \right] \] (25)

To find \(P(t) \), it is necessary to solve the Riccati equation (24) with boundary conditions (21). However, this is very difficult because the (24) has no analytic solution. Therefore, here we find the approximate solution by adding constraints on the quality criteria of the system.

From (25), we have:
\[n_{zm} = -k_1 \Delta \varphi - k_2 \Delta h \] (26)

So, instead of finding \(P_1, P_2 \), we find \(k_1 \) và \(k_2 \).

Substituting (26) into (7), we have:
\[\Delta \varphi = -\frac{g}{V_m} (k_1 \Delta \varphi + k_2 \Delta h) \] (27)

A two-sided derivation of (27) is given:
\[\Delta \varphi = -\frac{g}{V_m} (k_1 \Delta \varphi + k_2 \Delta h) \] (28)

Let \(y_1 = \Delta \varphi, y_2 = \Delta \varphi \), the (28) is rearranged as the following:
\[\begin{bmatrix} \dot{y}_1 \\ \dot{y}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -gk_1 & -\frac{g}{V_m}k_1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \] (29)

The characteristic equation of the equation system (29) is followed:
\[\alpha^2 + \frac{g}{V_m} k_1 \alpha + gk_2 = 0 \]

\[\alpha_{1,2} = \frac{-\frac{g}{V_m}k_1 \pm \sqrt{\left(\frac{g}{V_m}k_1 \right)^2 - 4gk_2}}{2} \] (30)

The general solution of (28) is given:
\[y_1 = \Delta \varphi = c_1 e^{\alpha_1 t} + c_2 e^{\alpha_2 t} \] (31)

Equation (31) is the general solution form of the homogeneous (28). In order to errors in the stable mode become zero, just satisfy conditions \(\alpha_1 < 0 \) and \(\alpha_2 < 0 \). To avoid over-tuning, \(\alpha_1 \) and \(\alpha_2 \) are real numbers, which means that:
\[\left(\frac{g}{V_m}k_1 \right)^2 > 4gk_2 \Rightarrow k_1 > 2\frac{V_m}{\sqrt{g}}k_2 ; k_2 > 0 \] (32)

Because \(k_1 > 0 \) and \(k_2 > 0 \), then \(\alpha_1 > \alpha_2 \). Therefore, if \(\alpha_1 < 0 \), it will be sure that \(\alpha_2 < 0 \). Besides, we have: \(-1/\alpha_1 = \tau \), where \(\tau \) is a time constant.

We add two constraints to the system. The first constraint is that the control law must ensure that the time constant is not higher than the allowed time constant.

Then, we obtain:
\[-\frac{g}{V_m}k_1 + \sqrt{\left(\frac{g}{V_m}k_1 \right)^2 - 4gk_2} - \frac{1}{T_{CP}} \]

where, \(T_{CP} \) is the allowed time constant.

Therefore, we get:
\[k_2 = \frac{1}{V_m T_{CP}} \left(k_1 - \frac{V_m}{gT_{CP}} \right) \] (33)

The second constraint is that a normal overload (the value of the control signal) is not higher than the allowed overload \(n_{zmCP} \), which means that \(n_{zm} \leq n_{zmCP} \).

Integrating with (26), we get:
\[n_{zmCP} = k_1 \Delta \varphi_{\text{max}} + k_2 \Delta h_{\text{max}} \]

where, \(\Delta \varphi_{\text{max}}, \Delta h_{\text{max}} \) are the maximum value of bias of flight path angle and instant deviation, respectively. Then,
\[k_1 = \frac{1}{V_m T_{CP}} \left(\Delta h_{\text{max}} + \Delta \varphi_{\text{max}} \right) \] (34)

Substituting \(k_1 \) into (33), we get:
\[k_2 = \frac{n_{zmCP} + \frac{V_m}{gT_{CP}} \Delta \varphi_{\text{max}}}{\Delta h_{\text{max}} + \frac{V_m}{gT_{CP}} \Delta \varphi_{\text{max}}} \] (35)
From (7) and (26), we obtain:

\[
\begin{align*}
1 & = - \frac{k_1 \Delta \psi + k_2 \Delta h'}{\sqrt{1 + f_2^2}} + \frac{f_r V_m}{g} \\
\end{align*}
\]

(36)

So, the equation (36) is the optimal midcourse guidance law with the coefficients are determined as (34) and (35); and \(m \psi_m \) are calculated as (3) and (5).

However, since the missile trajectory is a high curve, we have to calculate the amount of compensation. Therefore, the desired line-of-sight (LOS) angle compensated by the missile’s curved trajectory is given as follows:

\[
\psi_m^* = \arcsin \left(\frac{t_{sn} V_t}{t_{sn} V_m + r_{sn}} \sin \Delta \psi_t \right) + \sigma_0 + \psi_c
\]

(39)

where, \(\psi_c \) is a compensation of the flight path angle.

The compensation of the flight path angle is calculated as follows:

\[
\sin \psi_c = \frac{V_c}{V_m} \sin(\Delta \psi - \Delta \psi_t)
\]

(40)

2.4. A Wind Turbulence Model

It can be noted that wind turbulence can be modeled in several forms such as disturbance models according to the horizontal wind field and harmonized wind field. In this paper, we investigate the influence of the harmonized wind field in the horizontal plane to the quality of the proposed guidance law.

The harmonized wind model is given as follows:

\[
\begin{align*}
W_{x0} & = 10 \sin \left(2 \pi / T_w \right) \\
W_{z0} & = 10 \sin \left(2 \pi / T_w + \varphi \right)
\end{align*}
\]

(42)

3. Simulation Results and Discussion

In this work, numerical simulations were designed for evaluating the quality of effectiveness as well as the applicability of this proposed guidance law.

In the simulation experiments, the parameters of a missile and target are given in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity of missile</td>
<td>(V_m)</td>
</tr>
<tr>
<td>Overload factor</td>
<td>(</td>
</tr>
<tr>
<td>Line-of-sight angle</td>
<td>(\sigma_0) \atan(30/31)</td>
</tr>
<tr>
<td>Initial missile position</td>
<td>((x_m0, z_m0)) ((0, 0)) m</td>
</tr>
<tr>
<td>Target position</td>
<td>((x_t, z_t)) ((31.000, 31.0000)) m</td>
</tr>
<tr>
<td>Relative distance between the missile and target at the final time</td>
<td>(r_{sn}) (10.000) m</td>
</tr>
<tr>
<td>Velocity of target</td>
<td>(V_t) (300) m/s</td>
</tr>
<tr>
<td>Path angle of target</td>
<td>(\psi_t) (135^\circ)</td>
</tr>
<tr>
<td>Velocity of wind</td>
<td>(W_0) (10) m/s</td>
</tr>
</tbody>
</table>
In order to investigate the impact of wind on the proposed guidance law, we design four cases to do numerical simulation. In this study, we assume that the wind is harmonic wind with amplitude \(W_0 = 10 \text{ m/s} \), period \(T_w = 10 \text{ s} \), and the time of occurrence \(T \in [5; 15] \text{ s} \). The direction angle of wind compared to Oz axis are \(\pi/6 \), \(\pi/3 \), \(\pi/2 \) corresponding to case 2, 3, and 4. The mathematical model of wind in four cases is given in the table 2.

<table>
<thead>
<tr>
<th>Case</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No wind</td>
<td>(V_{W_0} = 10 \sin \left(\frac{2 \pi}{T_w} \right))</td>
<td>(V_{W_0} = 10 \sin \left(\frac{2 \pi}{T_w} + \frac{\pi}{6} \right))</td>
<td>(V_{W_0} = 10 \sin \left(\frac{2 \pi}{T_w} + \frac{\pi}{3} \right))</td>
</tr>
<tr>
<td></td>
<td>(V_{W_2} = 10 \sin \left(\frac{2 \pi}{T_w} \right))</td>
<td>(V_{W_2} = 10 \sin \left(\frac{2 \pi}{T_w} + \frac{\pi}{3} \right))</td>
<td>(V_{W_2} = 10 \sin \left(\frac{2 \pi}{T_w} + \frac{\pi}{2} \right))</td>
</tr>
</tbody>
</table>

The Figure 3 shows the missile trajectory and target trajectory in four cases. It can be seen that the missile trajectories in four cases are the same. However, when the harmonic wind is introduced, there is a bias compared with the case that does not consider the wind (see Figure 4).

![Figure 3. The missile trajectory and target trajectory.](image1)

![Figure 4. The difference of missile trajectories between four cases.](image2)

The overload factor and its difference in the four cases are shown in Figure 5 and Figure 6. When the wind occurs, there was a bias of overload factor (\(\Delta n_m = 1.3 \)). However, this bias will be disappeared when the wind is finished.

Figure 7 and Figure 8 represent the instant deviation and its bias. In Figure 7, as expected, the instant deviation goes to zero. Also, it becomes significant in the period that wind is introduced, and quickly reduces to instantaneous value over time as wind is disappeared.

![Figure 5. The overload factor.](image3)

![Figure 6. The difference of overload factor between four case.](image4)
The LOS rate and its difference between four cases are shown in Figure 9 and Figure 10. There is a deviation of the LOS rate at the final time between two cases: one considers a harmonic wind, whereas the other does not consider it.
However, it should be noted that this deviation is so small, $\Delta \dot{\theta} = -0.005 \text{ deg/s}$.

The heading angle and its difference between four cases are shown in Figure 11 and Figure 12. It can be seen that the heading angle reaches the desired one even there is a disturbance wind.

4. Conclusion

The parameters of slowly or stationary targets cannot be introduced in the geometric dynamic equations that represent the relationship between the missile and target. Then, the analytics guidance law can be synthesized by using the optimal control theory. However, for maneuver targets, the guidance law based on the proportional navigation is not compared to the optimal one.

So, an optimal midcourse guidance law is presented in this paper, which is based on the optimal control theory that minimizes a range of weighted control energy with initial boundary conditions. The simulation results show that the constraint requirements are satisfied at the final time, such as low LOS rate, overload factor, instant deviation. By introducing the harmonic wind, the simulation results provide the evaluations of the quality of effectiveness as well as the applicability of this proposed guidance law.

References

